Abstract

In this paper, we consider a finite horizon, non-stationary, mean field game (MFG) with a large population of homogeneous players, sequentially making strategic decisions, where each player is affected by other players through an aggregate population state termed as mean field state. Each player has a private type that only it can observe, and a mean field population state representing the empirical distribution of other players' types, which is shared among all of them. Recently, authors in [1] provided a sequential decomposition algorithm to compute mean field equilibrium (MFE) for such games which allows for the computation of equilibrium policies for them in linear time than exponential, as before. In this paper, we extend it for the case when state transitions are not known, to propose a reinforcement learning algorithm based on Expected Sarsa with a policy gradient approach that learns the MFE policy by learning the dynamics of the game simultaneously. We illustrate our results using cyber-physical security example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.