Abstract

In this article, a novel model-free dynamic inversion-based Q-learning (DIQL) algorithm is proposed to solve the optimal tracking control (OTC) problem of unknown nonlinear input-affine discrete-time (DT) systems. Compared with the existing DIQL algorithm and the discount factor-based Q-learning (DFQL) algorithm, the proposed algorithm can eliminate the tracking error while ensuring that it is model-free and off-policy. First, a new deterministic Q-learning iterative scheme is presented, and based on this scheme, a model-based off-policy DIQL algorithm is designed. The advantage of this new scheme is that it can avoid the training of unusual data and improve data utilization, thereby saving computing resources. Simultaneously, the convergence and stability of the designed algorithm are analyzed, and the proof that adding probing noise into the behavior policy does not affect the convergence is presented. Then, by introducing neural networks (NNs), the model-free version of the designed algorithm is further proposed so that the OTC problem can be solved without any knowledge about the system dynamics. Finally, three simulation examples are given to demonstrate the effectiveness of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call