Abstract

Deflectometry is a metrology method able to measure large surface slope ranges that can achieve surface reconstruction accuracy similar to interferometry, making it ideal for freeform metrology. While it is a non-null method, deflectometry previously required a precise model of the unit under test to accurately reconstruct the surface. However, there are times when no such model exists, such as during the grinding phase of an optic. We developed a model-free iterative data processing technique which provides improved deflectometry surface reconstruction of optics when the correct surface model is unknown. The new method iteratively reconstructs the optical surface, leading to a reduction in error in the final reconstructed surface. Software simulations measuring the theoretical performance limitations of the model-free processing technique as well as a real-world test characterizing actual performance were performed. The method was implemented in a deflectometry system and a highly freeform surface was measured and reconstructed using both the iterative technique and a traditional non-iterative technique. The results were compared to a commercial interferometric measurement of the optic. The reconstructed surface departure from interferometric results was reduced from 44.39 μm RMS with traditional non-iterative deflectometry down to 5.20 μm RMS with the model-free technique reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.