Abstract

In this article, we propose a model-free conditional feature screening method with false discovery rate (FDR) control for ultra-high dimensional data. The proposed method is built upon a new measure of conditional independence. Thus, the new method does not require a specific functional form of the regression function and is robust to heavy-tailed responses and predictors. The variables to be conditional on are allowed to be multivariate. The proposed method enjoys sure screening and ranking consistency properties under mild regularity conditions. To control the FDR, we apply the Reflection via Data Splitting method and prove its theoretical guarantee using martingale theory and empirical process techniques. Simulated examples and real data analysis show that the proposed method performs very well compared with existing works. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.