Abstract

AbstractIn this work we address the rate adaptation problem of a cognitive radio (CR) link in time-variant fading channels. Every time the primary users (PU) liberate the channel, the secondary user (SU) selects a transmission rate (from a finite number of available rates) and begins the transmission of fixed sized packets until a licensed user reclaims the channel back. After each transmission episode the number of successfully transmitted packets is used by the SU to update its optimal rate selection ahead of the next episode. The problem is formulated as an n-armed bandit problem and it is solved by means of a Monte Carlo control algorithm.KeywordsCognitive radio (CR)rate controln-armed bandit problemreinforcement learning (RL)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.