Abstract

An estimation of cardiac output can be obtained from arterial pressure waveforms using the Modelflow method. However, whether the assumptions associated with Modelflow calculations are accurate during whole body heating is unknown. This project tested the hypothesis that cardiac output obtained via Modelflow accurately tracks thermodilution-derived cardiac outputs during whole body heat stress. Acute changes of cardiac output were accomplished via lower-body negative pressure (LBNP) during normothermic and heat-stressed conditions. In nine healthy normotensive subjects, arterial pressure was measured via brachial artery cannulation and the volume-clamp method of the Finometer. Cardiac output was estimated from both pressure waveforms using the Modeflow method. In normothermic conditions, cardiac outputs estimated via Modelflow (arterial cannulation: 6.1 ± 1.0 l/min; Finometer 6.3 ± 1.3 l/min) were similar with cardiac outputs measured by thermodilution (6.4 ± 0.8 l/min). The subsequent reduction in cardiac output during LBNP was also similar among these methods. Whole body heat stress elevated internal temperature from 36.6 ± 0.3 to 37.8 ± 0.4°C and increased cardiac output from 6.4 ± 0.8 to 10.9 ± 2.0 l/min when evaluated with thermodilution (P < 0.001). However, the increase in cardiac output estimated from the Modelflow method for both arterial cannulation (2.3 ± 1.1 l/min) and Finometer (1.5 ± 1.2 l/min) was attenuated compared with thermodilution (4.5 ± 1.4 l/min, both P < 0.01). Finally, the reduction in cardiac output during LBNP while heat stressed was significantly attenuated for both Modelflow methods (cannulation: -1.8 ± 1.2 l/min, Finometer: -1.5 ± 0.9 l/min) compared with thermodilution (-3.8 ± 1.19 l/min). These results demonstrate that the Modelflow method, regardless of Finometer or direct arterial waveforms, underestimates cardiac output during heat stress and during subsequent reductions in cardiac output via LBNP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.