Abstract

Different chemical reaction models (first-order, second-order, and nth-order) and six different model-fitting techniques (nth-order, Friedman, Freeman−Carroll, Chang, ASTM E689, and the standard deviation minimization technique (SDMT)) are used to evaluate the kinetics triplet (E, ln k0, and n) for the thermal decomposition of waste soft drink poly(ethylene terephthalate) (PET) bottles (M/s Coca Cola). Nonisothermal experiments at four different heating rates (5, 10, 15, and 25 K/min) and isothermal experiments at four different temperatures (685, 693, 703, and 711 K) are conducted using thermogravimetric analysis (TGA). The experimental results are predicted through simulation of the kinetics models of decomposition. The model input parameters (i.e., the optimum kinetics triplet) are used as obtained from the different model-fitting techniques. Results show that the SDMT methodology with Agarwal and Sivasubramaniam approximation for the temperature integral is possibly the best and most versatile method ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.