Abstract

BackgroundNitrate is a widespread contaminant of drinking water supplies, especially in agricultural areas. Nitrate intake from drinking water and dietary sources can interfere with the uptake of iodide by the thyroid, thus potentially impacting thyroid function.MethodsWe assessed the relation of estimated nitrate levels in well water supplies with thyroid health in a cohort of 2,543 Old Order Amish residing in Lancaster, Chester, and Lebanon counties in Pennsylvania for whom thyroid stimulating hormone (TSH) levels were measured during 1995-2008. Nitrate measurement data (1976-2006) for 3,613 wells in the study area were obtained from the U.S. Geological Survey and we used these data to estimate concentrations at study participants' residences using a standard linear mixed effects model that included hydrogeological covariates and kriging of the wells' residuals. Nitrate levels estimated by the model ranged from 0.35 mg/L to 16.4 mg/L N-NO3-, with a median value of 6.5 mg/L, which was used as the cutpoint to define high and low nitrate exposure. In a validation analysis of the model, we calculated that the sensitivity of the model was 67% and the specificity was 93%. TSH levels were used to define the following outcomes: clinical hyperthyroidism (n = 10), clinical hypothyroidism (n = 56), subclinical hyperthyroidism (n = 25), and subclinical hypothyroidism (n = 228).ResultsIn women, high nitrate exposure was significantly associated with subclinical hypothyroidism (OR = 1.60; 95% CI: 1.11-2.32). Nitrate was not associated with subclinical thyroid disease in men or with clinical thyroid disease in men or women.ConclusionsAlthough these data do not provide strong support for an association between nitrate in drinking water and thyroid health, our results do suggest that further exploration of this hypothesis is warranted using studies that incorporate individual measures of both dietary and drinking water nitrate intake.

Highlights

  • Nitrate is a widespread contaminant of drinking water supplies, especially in agricultural areas

  • The U.S Environmental Protection Agency (EPA) maximum contaminant level (MCL) for nitrate as nitrogen is 10 mg/ L in public water sources [9], the levels in private wells are not regulated and the task of monitoring is left to residential owners, presenting opportunities for high levels of human exposure

  • Study population Subjects included in this analysis were 3,017 Old Order Amish aged 18 years and older from Lancaster, Chester, and Lebanon Counties, Pennsylvania, for whom thyroid health was assessed through measurement of thyroid stimulating hormone (TSH) levels in their prior participation in one or more studies of health by investigators at the University of Maryland, Baltimore [13,14,15,16]

Read more

Summary

Introduction

Nitrate intake from drinking water and dietary sources can interfere with the uptake of iodide by the thyroid, potentially impacting thyroid function. Nitrate is a widespread contaminant of drinking water supplies, especially in agricultural areas. The MCL for nitrate in drinking water was established to protect against methemoglobinemia, or “blue baby syndrome,” to which infants are especially susceptible. This health guideline has not been thoroughly evaluated for other health outcomes such as thyroid disease and cancer

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.