Abstract

Unraveling the consequences of hydrologic transport on carbon (C) storage will help identify feedbacks between land management alternatives, climate change, and soil-vegetation-atmospheric-transfers (SVATs) of C. There is a need for theoretically driven models of erosion and deposition that includes transport induced mineralization to better understand the controls on SVATs of C. Here we present a model developed using a systems-dynamic approach that coupled C-SVATs at a 2-day resolution with a discrete event erosion–deposition model occurring with a prescribed return interval. Five possible mass-balance transformations of C occurring between the two patches were explicitly modeled: net primary production (NPP), decomposition, erosion, transport induced mineralization, and deposition. The net C-SVAT, NPP minus decomposition, exhibited three stable points of no net C flux. Starting with arbitrary initial C pool in each patch above the bifurcation point, the model approached a quasi-steady state, which included both the short-term and longer term consequences of erosion; in the baseline simulation 5080 g C m −2 was stored prior to erosion and 100 years of low intensity erosion 4840 g C m −2 SOC remained. Low intensity erosion also generated spatial heterogeneity; from an initial homogeneous distribution to 40% of the C stored in the eroded patch and 60% of the C stored in the deposition patch. Erosion reduction resulted in a corresponding increase in total soil C content that was positively related to the magnitude of erosion reduction. In conjunction with providing a modeling framework for reducing the uncertainty in C-SVAT, this model is a prototype of a growing theory of ecosystem processes within spatially explicit landscapes, a meta-ecosystem model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.