Abstract

Designing a partial differential equations solver is a complex task which involves making choices about the solution algorithm and its parameters. Such choices are usually done on the basis of personal preference or numerical experiments, which can introduce significant bias on the selection process. In this work we develop a methodology to drive this selection process towards the optimal choices by modelling the accuracy and the performance of the solution algorithm. We show how this methodology can be successfully applied on the linear advection problem. As a result, the selection can be optimally performed with a much lower investment on the development of high-performance versions of the solvers and without using the target architecture for numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.