Abstract
This paper first discusses some experimental verification of proposed ultraviolet (UV) radiation curing process models and then it outlines a robust process optimization and control scheme for layer-by-layer UV processing of a thick composite laminate. The experiments include UV transmission, cure kinetics, and in situ temperature measurements for UV curing of a one-dimensional (1D) composite material sample. The validated models are used to motivate how optimizing the layer-by-layer curing process can help address the challenge of maintaining through-cure due to the in-domain attenuation of the UV input during thick-part fabrication. The key insight offered is to model the layer-by-layer deposition and curing process as a multimode hybrid dynamic system with a growing spatial domain, where the interlayer hold times and the UV intensity at each layer addition can be taken as the augmented control variables to be selected optimally. Specifically, the control input is set to have feed forward and output feedback components, which act on the UV intensity at each layer and are constructed to track a reference surface temperature trajectory. The feedback gains at each layer addition are designed by posing a robust optimization problem that penalizes the sensitivity of the objective function to process uncertainties. It is illustrated using simulation analyses that augmented control with robust optimal static feedback of UV intensity at each layer and nominal optimization of the interlayer hold times gives very close tracking of a desired final cure level distribution in the presence of parametric uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.