Abstract

Deformable Linear Object (DLO) manipulation has wide application in industry and in daily life. Conventionally, it is difficult for a robot to manipulate a DLO to achieve the target configuration due to the absence of the universal model that specifies the DLO regardless of the material and environment. Since the state variable of a DLO can be very high dimensional, identifying such a model may require a huge number of samples. Thus, model-based planning of DLO manipulation would be impractical and unreasonable. In this paper, we explore another approach based on reinforcement learning. To this end, our approach is to apply a sample-efficient model-based reinforcement learning method, so-called PILCO [1], to resolve the high dimensional planning problem of DLO manipulation with a reasonable number of samples. To investigate the effectiveness of our approach, we developed an experimental setup with a dual-arm industrial robot and multiple sensors. Then, we conducted experiments to show that our approach is efficient by performing a DLO manipulation task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.