Abstract

A novel predictive rotor current control scheme for a doubly fed induction generator (DFIG) is implemented to perform the DFIG grid synchronization with a fast dynamic response. With this control strategy applied to an experimental setup, the rotor currents swiftly follow the necessary reference for grid synchronization in the range ±30% of the generator rated shaft speed. The DFIG and converter discrete models are used to predict the behavior of the rotor currents. By minimizing the error between the references and the predictive rotor currents for each of the valid states of the converter, the best-suited switching state is selected and applied at the next sampling time. To validate the feasibility of implementing this approach, simulations and experiments were carried out for various shaft speed profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.