Abstract

This paper presents a model-based parameter optimization for simulating a metal-inert gas welding process. The computational model used in this study is based on computational fluid dynamics methods and implemented using the finite volume approach on a 3D computational domain. The wire electrode, the arc plasma and the workpiece are treated as a self-consistent system. Important welding parameters, including arc current, wire feed rate, workpiece thickness, welding speed and geometry, as well as the metal alloy types used for the wire and workpiece, were implemented as adjustable parameters. By tuning these parameters, the performance of the arc welding can be predicted, and different settings can be compared to optimize welding performance.A benchmarking study of the arc model against experimental measurements is presented to demonstrate the model's capabilities in the prediction of the weld pool changes and thermal dynamics involved in the welding process. Two numerical case studies are presented to demonstrate the use of the model-based optimization to quantify welding pool variations with the change in welding parameters. The first case study is the determination of the optimal arc current and welding speed settings for different workpiece thicknesses. The optimization process shows that the predictions are not only in agreement with established experimental welding experience on the direct relationship between workpiece thickness and arc current, but more importantly quantify this relationship for a given workpiece thickness. The second case study focuses on the welding parameters optimization for different metal alloys. The comparison suggests that the welding parameters suitable for some aluminium alloys are less likely to be successful in welding magnesium alloys. A further model validation of Mg alloy AZ31 welding shows an agreement with experimental measurements. The work presented shows the potential of model-based parameter optimization to assist process engineers in the practical improvement of the welding process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.