Abstract
Economical grade changes are considered for a Borealis Borstar® polyethylene plant model, incorporating two slurry-phase reactors, one gas-phase reactor and a recycle area with three distillation columns. The model is constructed in the Modelica language and the JModelica.org platform is used for optimization. The cost function expresses the economical profit during a grade change and is formulated using on-grade intervals for seven polymer quality variables such as melt index, density and reactor split factors. Additionally, incentives to produce polymer with quality variables on grade target values, not only inside grade intervals, are added. Twelve inflows and three purge flows are used as decision variables. Two grade changes are thoroughly reviewed, showing the effect of using a cost function that regards plant economy. Resulting trajectories can be divided into three phases with distinguishing features, and the synchronization of inflows and usage of recycle area off-gas flows are important in the grade changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.