Abstract
BackgroundHigh content of water-insoluble solids (WIS) is required for simultaneous saccharification and co-fermentation (SSCF) operations to reach the high ethanol concentrations that meet the techno-economic requirements of industrial-scale production. The fundamental challenges of such processes are related to the high viscosity and inhibitor contents of the medium. Poor mass transfer and inhibition of the yeast lead to decreased ethanol yield, titre and productivity. In the present work, high-solid SSCF of pre-treated wheat straw was carried out by multi-feed SSCF which is a fed-batch process with additions of substrate, enzymes and cells, integrated with yeast propagation and adaptation on the pre-treatment liquor. The combined feeding strategies were systematically compared and optimized using experiments and simulations.ResultsFor high-solid SSCF process of SO2-catalyzed steam pre-treated wheat straw, the boosted solubilisation of WIS achieved by having all enzyme loaded at the beginning of the process is crucial for increased rates of both enzymatic hydrolysis and SSCF. A kinetic model was adapted to simulate the release of sugars during separate hydrolysis as well as during SSCF. Feeding of solid substrate to reach the instantaneous WIS content of 13 % (w/w) was carried out when 60 % of the cellulose was hydrolysed, according to simulation results. With this approach, accumulated WIS additions reached more than 20 % (w/w) without encountering mixing problems in a standard bioreactor. Feeding fresh cells to the SSCF reactor maintained the fermentation activity, which otherwise ceased when the ethanol concentration reached 40–45 g L−1. In lab scale, the optimized multi-feed SSCF produced 57 g L−1 ethanol in 72 h. The process was reproducible and resulted in 52 g L−1 ethanol in 10 m3 scale at the SP Biorefinery Demo Plant.ConclusionsSSCF of WIS content up to 22 % (w/w) is reproducible and scalable with the multi-feed SSCF configuration and model-aided process design. For simultaneous saccharification and fermentation, the overall efficiency relies on balanced rates of substrate feeding and conversion. Multi-feed SSCF provides the possibilities to balance interdependent rates by systematic optimization of the feeding strategies. The optimization routine presented in this work can easily be adapted for optimization of other lignocellulose-based fermentation systems.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0500-7) contains supplementary material, which is available to authorized users.
Highlights
High content of water-insoluble solids (WIS) is required for simultaneous saccharification and co-fermentation (SSCF) operations to reach the high ethanol concentrations that meet the techno-economic requirements of industrial-scale production
Overall scheme of multi‐feed SSCF and strategy for optimization The underlying hypothesis of this work was that efficient SSCF depends on balanced rates of the major reactions occurring within an SSCF, and that such balance can be achieved by controlling the rates of multiple feeds
Yeast propagation in pre‐treatment liquor is a compromise between high cell yield and high fermentation capacity Cells adapted to the pre-treatment liquor during propagation have shown improved performance in simultaneous saccharification and fermentation (SSF)/SSCF [14,15,16]
Summary
High content of water-insoluble solids (WIS) is required for simultaneous saccharification and co-fermentation (SSCF) operations to reach the high ethanol concentrations that meet the techno-economic requirements of industrial-scale production. High-solid SSCF of pre-treated wheat straw was carried out by multi-feed SSCF which is a fed-batch process with additions of substrate, enzymes and cells, integrated with yeast propagation and adaptation on the pre-treatment liquor. The combined feeding strategies were systematically compared and optimized using experiments and simulations. Agricultural residues such as wheat straw are attractive raw materials for fuel ethanol production since they may allow high resource efficiency while avoiding the competition for crops between food and fuel production. SSF favours co-fermentation (SSCF) of glucose and xylose by recombinant Saccharomyces cerevisiae, because the concentration of glucose can be kept low due to balanced rates of release and consumption by hydrolysis and fermentation [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.