Abstract


 
 
 A Planetary gear can transmit high torque ratio stably and, therefore, the gear is widely used in industrial applications, i.e., wind turbines, automobiles, helicopters. Unexpected failure of the planetary gear results in substantial economic loss and human casualties. Extensive efforts have been made to develop the fault diagnostic techniques of gears; however, the techniques are mostly concerned about spur gears. This is mainly because understanding of complex dynamic behaviors of a planetary gear is lacking, such as multiple gear contacts, non-stationary axis of rotation, etc. This study thus proposes model-based fault diagnostics for a planetary gear that is based upon its dynamic analysis. Instead of vibration signals, this study uses transmission error (TE) signals for fault diagnostics of the planetary gear because TE signals (a) are directly related to the dynamic behaviors of gear mesh stiffness and (b) increase as damages on a gear mesh reduce the gear mesh stiffness. A lumped parameter model was used for modeling dynamic behaviors of the planetary gear. For more precise modeling, mesh phase difference–between sun, ring, and planet gear– and contact ratio were taken into account in the lumped parameter model. After acquiring transmission error signals from the model, order analysis and data processing were executed to generate health related data for the planetary gear. Consequently, it is concluded that the use of transmission error signals helps gain understanding of complex dynamic behaviors of the planetary gear and diagnose its potential faults.
 
 

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call