Abstract

A biofilm model was developed to describe the simultaneous NO3− and SeO42− reduction in a H2-based membrane biofilm reactor (MBfR). Model calibration and validation was conducted using the experimental data of a reported H2-based MBfR. With a good level of identifiability, the SeO42− affinity constant and the SeO32− affinity constant were estimated at 9.80 ± 0.51 g Se m−3 and 1.83 ± 0.38 g Se m−3, respectively. The model was then applied to evaluate the effects of key operating conditions on the single-stage H2-based MBfR and the role of reactor configuration through comparing two-stage to single-stage MBfR systems. The results showed that (i) high SeO42− or low NO3− concentration in the influent favored the growth of selenate-reducing bacteria (SeRB) and therefore benefited the Se removal, (ii) the influent dissolved oxygen slightly inhibited the Se removal through enhancing the aerobic microbial respiration on H2, (iii) the H2 supply should be controlled at a proper level to avoid SeRB suppression and H2 wastage, (iv) thin biofilm should be avoided to ensure a protected niche for SeRB and therefore a promising Se removal, and (v) the two-stage MBfR configuration offered relatively higher efficiency in removing Se and NO3− simultaneously under the same loading condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.