Abstract

We consider the problem of estimating buffer overflow probabilities when the statistics of the input traffic are not known and have to be estimated from measurements. We start by investigating the use of Markov-modulated processes in modeling the input traffic and propose a method for selecting an optimal model based on Akaike's Information Criterion. We then consider a queue fed by such a Markov-modulated input process and use large deviations asymptotics to obtain the buffer overflow probability. The expression for this probability is affected by estimation errors in the parameters of the input model. We analyze the effect of these errors and propose a new, more robust, estimator which is less likely to underestimate the overflow probability than the estimator obtained by certainty equivalence. As such, it is appropriate in situations where the overflow probability is associated with Quality of Service (QoS) and we need to provide firm QoS guarantees. Nevertheless, as the number of observations increases, the proposed estimator converges with probability 1 to the appropriate target, and thus, does not lead to resource underutilization in this limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.