Abstract

Wireless communications technology has the potential to provide major benefits in lowering the cost and increasing the efficiency of factory automation (FA) systems. However, design of FA systems that employ wireless networks involves stringent constraints on real-time performance and reliability, and requires the assessment of and experimentation with complex interactions among process control, factory topology construction (layout and connectivity of subsystems, such as machines, rails, etc.), and wireless communication. In this paper, we introduce a novel simulation framework to support such assessment and experimentation in the design of next-generation FA systems. Our simulation framework employs model-based design principles to enhance design reliability, and enable systematic and efficient integration of control, topology, and network modeling aspects. We demonstrate the utility of our framework through a case study that involves topology design and scalability analysis for a large class of FA systems. Our results demonstrate the ability of the proposed framework to provide insights on complex design trade-offs, while the underlying model-based features enhance efficient and reliable system-level integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call