Abstract

This study addresses the problem in accuracies of robot positioning and trajectory with compliance and geometric errors in robotic applications. A rigid–flexible coupling position error model of serial robot is presented to identify geometric and compliance error parameters simultaneously. On the basis of the error compensation model, the predicted position error can be corrected by the proposed hybrid error compensation method. Particular attention is paid to the deviation along the desired trajectory with respect to the corresponding updated trajectory, which is consecutively changing and cannot be corrected directly. A segmentation trajectory control method based on the Pareto-optimal with weighted-sum algorithm is proposed to solve the multi-objective optimisation problem in trajectory modification. The offline program optimiser integrates the proposed model-based compensation and trajectory modification method by MATLAB and VS software development platform. The method is developed to be an effective solution for the problem in absolute accuracies of positioning and trajectory with the experimental results achieved on a Staubli TX60L robot. Additional experiment is conducted with a Staubli RX160L robot to demonstrate the extensive feasibility and practical effectiveness of our approach for other industrial robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.