Abstract

This work presents a mathematical modeling framework for the simulation and optimization of PSA/VSA processes for postcombustion CO2 capture from dry flue gas (85% N2, 15% CO2). The modeling framework is first validated against literature data, illustrating good agreement in terms of several process performance indicators. Accordingly, the model is used to evaluate three available potential adsorbents for CO2 capture, namely, zeolite 13X, activated carbon and metal organic framework (MOF), Mg-MOF-74. A two-bed configuration (six-step VSA cycle) with light product pressurization has been employed in all simulations. The results from systematic comparative simulations demonstrate that zeolite 13X has the best process performance among the three adsorbents, in terms of CO2 purity and CO2 recovery. On the other hand, Mg-MOF-74 appears to be a promising adsorbent for CO2 capture, as it has considerably higher CO2 productivity compared to the other two adsorbents. Furthermore, process optimization studies using...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call