Abstract
In this work, we develop a bioequivalence analysis using nonlinear mixed effects models (NLMEM) that mimics the standard noncompartmental analysis (NCA). We estimate NLMEM parameters, including between-subject and within-subject variability and treatment, period and sequence effects. We explain how to perform a Wald test on a secondary parameter, and we propose an extension of the likelihood ratio test for bioequivalence. We compare these NLMEM-based bioequivalence tests with standard NCA-based tests. We evaluate by simulation the NCA and NLMEM estimates and the type I error of the bioequivalence tests. For NLMEM, we use the stochastic approximation expectation maximisation (SAEM) algorithm implemented in monolix. We simulate crossover trials under H(0) using different numbers of subjects and of samples per subject. We simulate with different settings for between-subject and within-subject variability and for the residual error variance. The simulation study illustrates the accuracy of NLMEM-based geometric means estimated with the SAEM algorithm, whereas the NCA estimates are biased for sparse design. NCA-based bioequivalence tests show good type I error except for high variability. For a rich design, type I errors of NLMEM-based bioequivalence tests (Wald test and likelihood ratio test) do not differ from the nominal level of 5%. Type I errors are inflated for sparse design. We apply the bioequivalence Wald test based on NCA and NLMEM estimates to a three-way crossover trial, showing that Omnitrope®; (Sandoz GmbH, Kundl, Austria) powder and solution are bioequivalent to Genotropin®; (Pfizer Pharma GmbH, Karlsruhe, Germany). NLMEM-based bioequivalence tests are an alternative to standard NCA-based tests. However, caution is needed for small sample size and highly variable drug.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.