Abstract

This work shows the wave propagation in fluid-solid interfaces due to dynamic excitations, such interface waves are known as Scholte's waves. We studied a wide range of elastic solid materials used in engineering. The interface connects an acoustic medium (fluid) and another solid. It has been shown that by means of an analysis of diffracted waves in a fluid, it is possible to deduce the mechanical characteristics of the solid medium, specifically, its propagation velocities. For this purpose, the diffracted field of pressures and displacements, due to an initial pressure in the fluid, are expressed using boundary integral representations, which satisfy the equation of motion. The initial pressure in the fluid is represented by a Hankel's function of second kind and zero order. The solution to this problem of wave propagation is obtained by means of the Indirect Boundary Element Method, which is equivalent to the well-known Somigliana's representation theorem. The validation of the results was performed by means of the Discrete Wave Number Method. Firstly, spectra of pressures to illustrate the behavior of the fluid for each solid material considered are included, then, the Fast Fourier Transform algorithm to display the results in the time domain is applied, where the emergence of Scholte's waves and the amount of energy that they carry are highlighted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call