Abstract

A novel facade embedded compound parabolic concentrator solar collector (FE-CPC-SC) with great application potential was proposed, which was aimed to capture and utilize the solar rays reaching the building facade. The optical models of beam and diffuse radiation were constructed for the designed physical model, which was based on Monte Carlo Ray-trace and numerical method. The optical simulation results showed that average optical efficiency for FE-CPC-SC system is approximately 64.51%. Additionally, a closed-loop photo-thermal conversion experiment with a maximum uncertainty of 10.24% was performed to verify the numerical heat transfer model of the photo-thermal conversion performance for FE-CPC-SC system. The experimental values of photo-thermal efficiency were in good agreement with the theoretical values, and the relative error was between −12.5% and 10.8%. According to the verified numerical model, the photo-thermal performance of FE-CPC-SC system applicable to four different latitudes was predicted and evaluated. The evaluation results presented that the annual heat gain in different latitudes (Kunming, Chengdu, Xi’an and Beijing) is 825.17, 447.84, 655.77 and 441.38 MJ/m2, respectively. Furthermore, the FE-CPC-SC system could meet the human-oriented thermal energy demand in an environmental-friendly way and alleviate the pressure on building energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call