Abstract

Abstract Electro-rheological (ER) fluid devices are becoming more popular in the industrial applications. This is due to the fast speed of response and large output dynamics of the ER actuators. The usefulness of this ER dynamic response is considered in the material winding processes where fast output bi-directional responses are essential. Therefore in the present paper, an ER twin clutch mechanism is proposed. This clutch mechanism consists of two identical clutches that rotate in opposite directions. But the bi-directional output dynamics of the clutch mechanism is not well understood due to its non-validation in the past. The main aim of this paper is to model the reciprocating responses of the clutch mechanism and then perform model validation with the measured test results. The close agreements between the modeled and experimental data indicate that the ER output angular velocity and displacement responses’ models of the clutch mechanism are validated. These validated models can then be used to predict accurately the reciprocating output responses of the twin ER clutch mechanism for future research studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.