Abstract

Total hip arthroplasty (THA) failure and the need for revision surgery can result from fretting-corrosion damage of the head-neck modular taper junctions. Prior work has shown that implant geometry, such as microgrooves, influences damage on retrieved implants. Microgroove deformation within the modular taper junction occurs when the female head taper meets the male stem taper during THA surgical procedure. The objective of this work was to validate microgroove deformation after head-neck THA assembly as calculated by finite element analysis (FEA). Four 28 mm CoCrMo head tapers and four Ti6Al4V stem tapers were scanned via white light interferometry. Heads were assembled onto stem tapers until 6kN reaction force was achieved, followed by head removal using a cut-off machine. The stem tapers were then rescanned and analyzed. Simultaneously, a 2D axisymmetric FEA model was developed and assembled per implant geometries and experimental data. For experiments and FEA, the mean change in microgroove height was 1.23 µm and 1.40 µm, respectively. The largest microgroove height change occurred on the proximal stem taper due to the conical angles of the head and stem tapers. FEA showed that the head-stem assembly induced high stresses and microgroove peaks flattening. 76–89% and 91–100% of the microgrooves in the experiments and FEA, respectively, showed height changes along the contact length of the stem taper. A validated FEA model of THA head-neck modular junction contact mechanics is essential to identifying implant geometries and surface topographies that can potentially minimize the risk of fretting and fretting-corrosion at modular junctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call