Abstract
The dynamic response of highway bridges subjected to moving truckloads has been observed to be dependent on (1) dynamic characteristics of the bridge; (2) truck configuration, speed, and lane position on the bridge; and (3) road surface roughness profile of the bridge and its approach. Historically, truckloads were measured to determine the load spectra for girder bridges. However, truckload measurements are either made for a short period of time [for example, weigh-in-motion (WIM) data] or are statistically biased (for example, weigh stations) and cost prohibitive. The objective of this paper is to present results of a three-dimensional computer-based model for the simulation of multiple trucks on girder bridges. The model is based on the grillage approach and is applied to four steel girder bridges tested under normal truck traffic. Actual truckload data collected using a discrete bridge WIM system are used in the model. The data include axle loads, truck gross weight, axle configuration, and statistical data on multiple presence (side by side or following). The results are presented as a function of the static and dynamic stresses in each girder and compared with code provisions for dynamic load factor. The study provides an alternate method for the development of live-load models for bridge design and evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.