Abstract
Model updating issues with high-dimensional and strong-nonlinear optimization processes are still unsolved by most optimization methods. In this study, a hybrid methodology that combines the Gaussian-white-noise-mutation particle swarm optimization (GMPSO), back-propagation neural network (BPNN) and Latin hypercube sampling (LHS) technique is proposed. In this approach, as a meta-heuristic algorithm with the least modification to the standard PSO, GMPSO simultaneously offers convenient programming and good performance in optimization. The BPNN with LHS establishes the meta-models for FEM to accelerate efficiency during the updating process. A case study of the model updating of an actual bridge with no distribution but bounded parameters was carried out using this methodology with two different objective functions. One considers only the frequencies of the main girder and the other considers both the frequencies and vertical displacements of typical points. The updating results show that the methodology is a sound approach to solve an actual complex bridge structure and offers good agreement in the frequencies and mode shapes of the updated model and test data. Based on the shape comparison of the main girder at the finished state with different objective functions, it is emphasized that both the dynamic and static responses should be taken into consideration during the model updating process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.