Abstract

Multiple objects tracking is a challenging task. This article presents an algorithm which can detect and track multiple objects, and update target model automatically. The contributions of this paper as follow: Firstly, we use color histogram(HC) and histogram of orientated gradients(HOG) to represent the objects, model update is realized under the frame of kalman filter and gaussian model, secondly we use Gaussian Mixture Model(GMM) and Bhattacharyya distance to detect object appearance. Particle filter with combined features and model update mechanism can improve tracking effects. Experiments on video sequences demonstrate that multiple objects tracking based on improved algorithm have good performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.