Abstract

AbstractParametric (polynomial) models are popular in research employing regression discontinuity designs and are required when data are discrete. However, researchers often choose a parametric model based on data inspection or pretesting. These approaches lead to standard errors and confidence intervals that are too small because they do not incorporate model uncertainty. I propose using Frequentist model averaging to incorporate model uncertainty into parametric models. My Monte Carlo experiments show that Frequentist model averaging leads to mean square error and coverage probability improvements over pretesting. An application to [Lee, D. S. 2008. “Randomized Experiments From Non-Random Selection in US House Elections.”

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.