Abstract

Because the main process of interaction in the Boltzmann model of real gases is the binary collision of molecules, it is convenient to use the two-particle kinetic equation to describe the dynamics of a rarefied gas. This equation was written using the same physical assumptions as those used by Ludwig Boltzmann. The right-hand side of this equation contains the product of the linear scattering operator and chaos projector. The Boltzmann equation follows from this equation without any additional approximations after simple integration of the velocities and positions of the second particle. Using the divergence form of the scattering operator, this equation can be represented as the Liouville equation, which implies that real molecules can be replaced by quasiparticles whose distribution function is the same as that of real molecules but whose dynamics are completely different. Pairs of quasiparticles do not collide but move along continuous trajectories in the phase space. The relative velocities in pairs of quasiparticles slowly rotate with an angular velocity vector depending on the distribution function. We provide an explicit approximate expression for the angular velocity through the first few velocity moments, using a special covariant Grad expansion for the velocity distribution function, which reduces to the exact Bobylev–Kruk–Wu solution in the isotropic case. We simulated the relaxation of distribution function to equilibrium and compared results with the existing exact solutions. The described algorithm will be effective for modeling flow regions with low Knudsen numbers, where the standard Direct Monte Carlo Simulation (DSMC) method encounters significant difficulties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.