Abstract

ABSTRACT In order to further the development of plant-based remediation of sites contaminated by carbo-chemical and petro-chemical industries, the penetration of the roots of Phragmites australis in contaminated soil substrate was studied in model trials. The series of experiments contained model substrate with firm bitumen and tar. In terms of the level of root penetration, the roots and rhizomes penetrated equally through the middle of the pot and at the edges as well as coming up through the bottom. There were differences between the density of the root systems in the topsoil of the two variations, with the roots in the sample with a 3.5 -cm bitumen layer being more dense. The experiment also showed that shallow rooting plants can penetrate thick barriers and are suitable for planting in contaminated areas. In the subsoil zone, which contained many roots, a reduction of up to 85% in the MOH content was observed. In a second series of long-term pot experiments, the stimulation of hydrocarbon remediation by Phragmites australis, Alnus glutinosa, and Robinia pseudoacacia was studied. In the subsoil zone, which contained many roots, a reduction of up to 64% in the hydrocarbon content was determined. In the comparison between the cropped and noncropped treatments, the decontamination ratio was up to 40% higher in the cropped pots than in the pots without plants. For a determination of microbial activity, two enzymes (catalase, ß-glucosidase) and microbial biomass were measured. Variants with plants showed higher microbial activities than uncropped pots. By increasing “biostimulation,” pollution and also the leaching of pollutants can be reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.