Abstract
A large number of certified samples are usually required to build models in the quantitative analysis of complicated matrices in laser-induced-breakdown spectroscopy (LIBS). Because of differences among instruments, including excitation and collection efficiencies, a quantitative model made on one instrument is difficult to apply directly to other instruments. Each instrument requires a large number of samples to model, which is very labor intensive and will hinder the rapid application of the LIBS technique. To eliminate the differences in spectral data from different instruments and reduce the cost of building new models, a piecewise direct standardization method combined with partial least squares (PLS_PDS) is studied in this work. Two portable LIBS instruments with the same configuration are used to obtain spectral data, one of which is called a master instrument because its calibration model is directly built on a large number of labeled samples, and the other of which is called a slave instrument because its model is obtained from the master instrument. The PLS_PDS method is used to build a transfer function of spectra between the master instrument and slave instrument to reduce the spectral difference between two instruments, and thus one calibration model can adapt to different instruments. Results show that for multiple elemental analyses of aluminium alloy samples, the number of samples required for slave modeling was reduced from 51 to 14 after model transferring by PLS_PDS, and the quantitative performance of the slave instrument was close to that of the master instrument. Therefore, the model transfer method can obviously reduce the sample number of building models for slave instruments, and it will be beneficial to advance the application of LIBS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.