Abstract

Abstract Our results in this paper increase the model-theoretic precision of a widely used method for building ultrafilters, and so advance the general problem of constructing ultrafilters whose ultrapowers have a precise degree of saturation. We begin by showing that any flexible regular ultrafilter makes the product of an unbounded sequence of finite cardinals large, thus saturating any stable theory. We then prove directly that a “bottleneck” in the inductive construction of a regular ultrafilter on λ (i.e., a point after which all antichains of ${\cal P}\left( \lambda \right)/{\cal D}$ have cardinality less than λ) essentially prevents any subsequent ultrafilter from being flexible, thus from saturating any nonlow theory. The constructions are as follows. First, we construct a regular filter ${\cal D}$ on λ so that any ultrafilter extending ${\cal D}$ fails to ${\lambda ^ + }$ -saturate ultrapowers of the random graph, thus of any unstable theory. The proof constructs the omitted random graph type directly. Second, assuming existence of a measurable cardinal κ, we construct a regular ultrafilter on $\lambda > \kappa$ which is λ-flexible but not ${\kappa ^{ + + }}$ -good, improving our previous answer to a question raised in Dow (1985). Third, assuming a weakly compact cardinal κ, we construct an ultrafilter to show that ${\rm{lcf}}\left( {{\aleph _0}} \right)$ may be small while all symmetric cuts of cofinality κ are realized. Thus certain families of precuts may be realized while still failing to saturate any unstable theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.