Abstract

To address the large deformation problem of operating straight-joint assembled shield tunnels in soft soil, horizontal lateral grouting is often used. Using an independently designed and developed lateral grouting test device, a horizontal lateral grouting model test was conducted to study the tunnel force state and deformation repair law under the action of lateral grouting. The mechanical responses of tunnel under single-hole grouting (SHG) and two double-holes grouting (DHG) cases were comparatively analyzed, and the test results were further validated via numerical simulations. The results indicate that several key indicators of tunnel behavior, including additional pressure, bending moment, radial displacement, convergence deformation, and ellipticity, exhibit a positive correlation with the grouting volume and a negative correlation with the distance to the grouting point when implementing SHG. Expect for radial displacement, all of these metrics caused by DHG were greater than those caused by SHG. The horizontal radial displacement increases under same-side DHG but decreases under different-side DHG. Interestingly, same-side DHG is more favorable for reducing internal force and repairing tunnel deformation, and effectively improves tunnel differentiated deformation state along the longitudinal direction. However, different-side DHG can provide a better effect for transverse convergence deformation repair under the premise of minimizing tunnel overall displacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.