Abstract

An autoclavable all-glass system for studying microbial dynamics at permeable surfaces is described. Standard hydrophobic or hydrophilic membranes (46-mm diameter) of various pore sizes were supported on a glass frit through which nutrient solutions were pumped by a peristaltic pump. The pump provided a precisely controlled flow at speeds of 0.5 to 500 ml of defined or natural cell exudates per h, which passed through the membrane into a receiving vessel. The construction allowed a choice of membranes, which could be modified. The system was tested with a bacterium, isolated from rape plant roots (Brassica napus L.), that was inoculated on a hydrophilic membrane filter and allowed to develop into a biofilm. A defined medium with a composition resembling that of natural rape root exudate was pumped through the membrane at 0.5 ml/h. Scanning electron microscopic examinations indicated that the inoculum formed microcolonies embedded in exopolymers evenly distributed over the membrane surface. The lipid composition and content of poly-beta-hydroxybutyrate in free-living and adhered cells were determined by gas chromatography. The bacterial consumption of amino acids in the exudate was also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.