Abstract
Previous model experiments of the 8.2 ka event forced by the drainage of Lake Agassiz often do not produce climate anomalies as long as those inferred from proxies. In addition to the Agassiz forcing, there is new evidence for significant amounts of freshwater entering the ocean at 8.2 ka from the disintegration of the Laurentide ice sheet (LIS). We use the Community Climate System Model version 3 (CCSM3) to test the contribution of this additional meltwater flux. Similar to previous model experiments, we find that the estimated freshwater forcing from Lake Agassiz is capable of sustaining ocean and climate anomalies for only two to three decades, much shorter than the event duration of ~150 years in proxies. Using new estimates of the LIS freshwater flux (~0.13 Sv for 100 years) from the collapse of the Hudson Bay ice dome in addition to the Agassiz drainage, the CCSM3 generates climate anomalies with a magnitude and duration that match within error those from proxies. This result is insensitive to the duration of freshwater release, a major uncertainty, if the total volume remains the same. An analysis of the modeled North Atlantic freshwater budget indicates that the Agassiz drainage is rapidly transported out of the North Atlantic while the LIS contribution generates longer-lasting freshwater anomalies that are also subject to recirculation by the subtropical gyre back into the North Atlantic. Thus, the meltwater flux originating from the LIS appears to be more important than the Agassiz drainage in generating 8.2 ka climate anomalies and is one way to reconcile some model-data discrepancies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.