Abstract

Aqueous solutions of Nalpha-acetylarginine and glucose were reacted for 2 h with pressure application from 0 to 600 MPa and varying temperatures between 90 and 120 degrees C. After enzymatic deacetylation of the reaction products, the glycated amino acids were separated by means of a self-assembled preparative ion exchange chromatography system using ninhydrin detection. On the basis of the use of eight synthesized reference compounds known in the literature as posttranslational arginine modifications, first, the presence of several glycated amino acids could be excluded. On the other hand, N5-[[(1-carboxyethyl)amino]iminomethyl]ornithine [N7-(1-carboxyethyl)arginine; N7-CEA; 12] was identified as a previously unknown arginine modification based on LC-MS, NMR measurements, and synthesis. In addition, N5-(5-hydro-5-methyl-4-imidazolon-2-yl)-L-ornithine (1) was identified as a further major reaction product. In further experiments, the formation of 1 and 12 was quantitatively followed at different pressures and/or temperatures. The results indicated that high hydrostatic pressure at elevated temperatures significantly increased the amounts of both arginine modifications. 2-Oxopropanal, known to form 1 in a reaction with arginine, was also quantified to explain the different yields observed after pressure application. A new formation mechanism leading to 12 by a reaction of the guanidine group or arginine with 2-oxopropanal is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.