Abstract

To model the flow behavior of white and red blood cells at microvascular branch points, the distribution of neutrally buoyant spherical and disk-shaped particles at a symmetric T bifurcation was investigated for low Reynolds number flows (0.01-0.1). The particle distribution was represented by the fractional particle flux to a daughter branch as a function of the fractional volumetric bulk flow to the same branch. Particle-to-tube diameter ratios of 0.32-0.79 were studied for the spherical particles and 0.4-0.8 for the disks. As the particle dimensions approach that of the tube, the relation between the fractional particle flux and fractional bulk flow changes from a linear relation of unity slope to a nonlinear S-shaped curve. Measurements of the flow divider at the entrance to the bifurcation and the eccentricity distributions for the spheres and disks were used to develop a model that permits prediction of the observed particle distributions. These results can be used to interpret the distribution of white and red blood cells in microvascular bifurcations with dimensions close to the cell size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.