Abstract

Series-biased arrays of long Josephson junction fluxon oscillators can be phase locked by mutual coupling to a high-Q, linear distributed resonator. A simplified model of such a device, consisting of junctions described by the particle-map perturbation theory approach which are capacitively coupled to a lumped, linear tank circuit, reproduce the essential experimental observations at a very low computational cost. A more sophisticated model, consisting of partial differential equation descriptions of the junctions, again mutually coupled to a linear tank, substantially confirm the predictions of the simplified model. In the particle-map model, the locking range in junction bias current increases linearly with the coupling capacitance; in the partial differential equation (p.d.e.) model, this holds up to a certain maximum value of the capacitance, after which a saturation of the locking range is observed. In both models, for a given spread of junction lengths, the existence of a minimum value of the capacitance for locking to a tank with a given resonant frequency is evidenced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.