Abstract

The majority of nonlinear models based on neural networks are of the black-box structure. A nonlinear system can be nonlinear in many different ways, thus the nonlinear black-box model structure must be very flexible. This means that it must have many parameters. A model offering many parameters usually creates problems, and the variance contribution to the error might be high. For a particular identification problem, only a subset of the parameters may be necessary, and the main topic in nonlinear system identification is how to select a model structure that describes the system dynamics with the minimum number of parameters. This paper discusses nonlinear input-output models that are suitable for implementation of feedforward neural networks. The proposed model structures were tested and compared using the identification procedure of a pH process. The results indicated that a simplest model structure can satisfactorily represent the investigated process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call