Abstract
AbstractGiven a holomorphic self-map $\varphi $ of $\mathbb {D}$ (the open unit disc in $\mathbb {C}$ ), the composition operator $C_{\varphi } f = f \circ \varphi $ , $f \in H^2(\mathbb {\mathbb {D}})$ , defines a bounded linear operator on the Hardy space $H^2(\mathbb {\mathbb {D}})$ . The model spaces are the backward shift-invariant closed subspaces of $H^2(\mathbb {\mathbb {D}})$ , which are canonically associated with inner functions. In this paper, we study model spaces that are invariant under composition operators. Emphasis is put on finite-dimensional model spaces, affine transformations, and linear fractional transformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.