Abstract

Starting from a diatomics-in-molecules Hamiltonian description of the valence states of Cl 2 embedded in an argon matrix, classical trajectory simulations are utilized to establish a one-dimensional model for the photodissociation dynamics in three selected singlet and triplet states which is valid during approximately 150 fs after Franck–Condon excitations, i.e. before the Cl atoms approach the neighbouring Ar atoms. Using this one-dimensional model which describes the dynamics of the Cl–Cl bond length in the frozen argon lattice we carry out quantum dynamics simulations of the laser pulse control of the electronic spin with femtosecond time resolution and sub-Ångstrom spatial localization by means of simultaneous excitation of wave packets on the singlet and triplet potential curves starting from a vibrational superposition state in the electronic ground state. It is shown that the latter can be prepared by a pump–dump pulse sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.