Abstract

There is a growing concern over the ongoing rabies epidemic in Sarawak that has remain unresolved ever since the outbreak began in July 2017. As of today, there has been 18 positive human rabies cases reported, which includes 17 fatalities, and one survivor who is now on life support after a severe neurological complications. Subsequently, the death rate now stands at approximately 94%. This paper is a preliminary report on the simulation of rabies transmission dynamics in Sarawak. At present, research is still lacking on the disease dynamics of rabies in Malaysia particularly in the state of Sarawak. We propose here a deterministic, compartmental model with SEIRS framework to fit actual data on the number of human infected rabies cases in Sarawak from June 2017 to January 2019. The simulation predicts that rabies in Sarawak will persist even with the current outbreak management and control efforts. Further, sensitivity analysis showed that dog vaccination rate is the most influential parameter and the basic reproduction number is estimated to be higher than 1. Henceforth, there is a need to increase the access to dog vaccines especially in remote rural areas with lack of health facilities. Our findings also suggest that controlling dog births could prevent the spread of rabies from perpetuating in the state. Neutering or using other fertility control methods would reduce the input of new susceptible domestic dogs into the population while Trap-Neuter-Vaccinate-Release (TNVR) method can be implemented to control new births of free-roaming strays. In summary, increasing the coverage of dog vaccination and reducing the number newborn dogs would be the more effective strategies to manage the current rabies outbreak in Sarawak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.