Abstract

The crosslinking behavior of polyethylene (PE) determines its exceptional performance and application. In this study, we investigated the crosslinking behaviors of different PE resins through model simulation and rheological methods. Specifically, the mathematical equation of "S" model was established for PE resin. According to this equation, the optimal maximum gel content for high-density polyethylene (HDPE) was found to be around 85%. Moreover, the maximum crosslinking degrees for different PE resins depended largely on their density and molecular weight. The melt viscosities before crosslinking in PE resins were highly influenced by their melt index. The higher melt indexes resulted in the lower storage moduli, improving melt processability during processing. In addition, the crosslinking rates of PE resins were strongly influenced by peroxide concentration, independent of PE resin structures. For high molecular weight and low-density PE resins, they exhibited decreased ti values, increased A0 values, and decreased k6 values. However, there were no noticeable variations in the values of k2 and phi among different PE resins. All simulated modeling outcomes showed remarkable consistency with the experimental rheological data. These findings are of strong significance in the industrial manufacture of PE resin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.