Abstract

The cation-exchange capture step of a monoclonal antibody (mAb) purification process using single column batch and multicolumn continuous chromatography (MCSGP) was modeled with a lumped kinetic model. Model parameters were experimentally determined under analytical and preparative conditions: porosities, retention factors and mass transfer parameters of purified mAb were obtained through a systematic procedure based on retention time measurements. The saturation capacity was determined through peak fitting assuming a Langmuir-type adsorption isotherm. The model was validated using linear batch gradient elutions. In addition, the model was used to simulate the start-up, cyclic steady state and shut down behavior of the continuous capture process (MCSGP) and to predict performance parameters. The obtained results were validated by comparison with suitable experiments using an industrial cell culture supernatant. Although the model was not capable of delivering quantitative information of the product purity, it proved high accuracy in the prediction of product concentrations and yield with an error of less than 6%, making it a very useful tool in process development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.