Abstract

In this theoretical work, a mathematical model of the positive active mass of a lead/acid battery considering the effect of proton incorporation into the solid material of the lead dioxide electrode is presented. It can be regarded as an extension of a classic isothermal description, well known from literature. The influence of the proton incorporation reaction on the transient behavior as well as on the steady-state profiles has been analyzed and compared to the classical model. A significant influence of the process of proton incorporation on the transients of the model quantities was found, which reflects a pseudocapacitive behavior of the positive active material. This effect stabilizes the positive electrode potential, especially at a short-time high rate current flow. It could be shown that the transport of protons through the active mass is also present in steady-state conditions. This allows the protons two alternative ways of transportation, liquid and solid phases, in both transient and steady-state situations. Proton transport in the solid phase has not been considered before and may explain the high pseudocapacity of lead dioxide positive active material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.