Abstract

We consider the model selection problem in the class of stationary variable length Markov chains (VLMC) on a finite space. The processes in this class are still Markovian of high order, but with memory of variable length. Various aims in selecting a VLMC can be formalized with different non-equivalent risks, such as final prediction error or expected Kullback-Leibler information. We consider the asymptotic behavior of different risk functions and show how they can be generally estimated with the same resampling strategy. Such estimated risks then yield new model selection criteria. In particular, we obtain a data-driven tuning of Rissanen's tree structured context algorithm which is a computationally feasible procedure for selection and estimation of a VLMC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.