Abstract
This paper develops new model selection methods for forecasting panel data using a set of least squares (LS) vector autoregressions. Model selection is based on minimizing the estimated quadratic forecast risk among candidate models. We provide conditions under which the selection criterion is asymptotically efficient in the sense of Shibata (1980) as n (cross sections) and T (time series) approach infinity. Relative to extant selection criteria, this criterion places a heavier penalty on model dimensionality in order to account for the effects of parameterized forms of cross sectional heterogeneity (such as fixed effects) on forecast loss. We also extend the analysis to bias-corrected least squares, showing that significant reductions in forecast risk can be achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.